
J
H
E
P
0
8
(
2
0
0
8
)
0
8
4

Published by Institute of Physics Publishing for SISSA

Received: June 20, 2008

Accepted: August 19, 2008

Published: August 26, 2008

Melvin twists of global AdS5 × S5 and their

non-commutative field theory dual

Danny Dhokarh, Sheikh Shajidul Haque and Akikazu Hashimoto

Department of Physics, University of Wisconsin,

Madison, WI 53706, U.S.A.

E-mail: dhokarh@wisc.edu, haque@wisc.edu, aki@physics.wisc.edu

Abstract: We consider the Melvin Twist of AdS5×S5 under U(1)×U(1) isometry of the

boundary S3 of the global AdS5 geometry and identify its field theory dual. We also study

the thermodynamics of the Melvin deformed theory.

Keywords: AdS-CFT Correspondence, Non-Commutative Geometry.

mailto:dhokarh@wisc.edu
mailto:haque@wisc.edu
mailto:aki@physics.wisc.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
8
(
2
0
0
8
)
0
8
4

Type of Twist Model

Melvin Twist Hashimoto-Thomas model

Melvin Shift Twist Seiberg-Witten Model

Null Melvin Shift Twist Aharony-Gomis-Mehen model

Null Melvin Twist Dolan-Nappi model

Melvin Null Twist Hashimoto-Sethi model

Melvin R Twist Bergman-Ganor model

Null Melvin R Twist Ganor-Varadarajan model

R Melvin R Twist Lunin-Maldacena model

Table 1: Catalog of non-commutative gauge theories viewed as a world volume theory of D-branes

in a “X” Melvin “Y” twist background. This table originally appeared in [18].

Melvin twist, also known as the T-s-T transformation, is a powerful solution generating

technique in supergravity and string theories [1 – 6]. The procedure relies on having a

U(1) × U(1) compact isometry along which one performs a sequence of T-duality, twist,

and a T-duality. The twist is an SL(2, R) transformation on the complex structure of

the T-dual torus. As such, the Melvin twist can simply be thought of as an SL(2, R)

transformation acting on the Kähler structure of the torus parameterized by U(1) × U(1).

Interesting closed string backgrounds, such as Melvin universes, null branes, pp-waves,

and Gödel universes can be constructed by applying the Melvin Twist procedure to the

Minkowski background. The construction reveals the hidden simplicity of these closed

string backgrounds: they are dual to flat spaces. As a result, world sheet sigma model for

strings in these backgrounds are exactly solvable and have been studied extensively [7 –

12]. The same procedure can be applied to black p-brane backgrounds to construct various

asymptotically non-trivial space-time geometries [13].

Melvin twist applied to the Dp-brane background and the subsequent near horizon

limit gives rise to supergravity duals for a variety of decoupled field theories1 depending

on the orientation of the brane and the Melvin twist. If both of the U(1) isometries

are along the brane, one generally obtains a non-commutative field theory, typically with

non-constant non-commutativity parameter [14 – 19]. If one of the U(1) is transverse to

the brane, then one obtains a dipole field theory [20 – 22]. Taking both of the U(1)’s to be

transverse to the brane gives rise to the construction of Lunin and Maldacena [23]. The list

of models constructed along these lines is summarized in table 1. These theories are S-dual

to NCOS theories [24, 25]. They are also closely related to “Puff Field Theory” which was

studied recently in [26, 27]. The hidden simplicity of Melvin twists in the context of gauge

theory duals manifests itself as preservation of integrability. The fact that q/β-deformed

N = 4 SYM remains integrable was pointed out in [28, 29]. A broader class of integrable

twists were studied in [30, 31].

In this article, we consider the effect of twisting along the U(1)×U(1) ∈ SO(4) isometry

1An earlier discussion of a construction of this type is [6].
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of the S3. More specifically, we consider AdS5 × S5 solution of type IIB theory

ds2 = R2
[

− cosh2 ρdτ2 + dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2) + dΩ2
5

]

B = 0

eφ =
λ

4πN
(1)

where λ is the ’t Hooft coupling

λ = 2g2
YMN = 4πgsN =

R4

α′2
, (2)

and perform a Melvin twist on the torus parameterized by the coordinates (φ1, φ2). This

is equivalent to acting on the Kahler structure

ρ =
1

α′

(

Bφ1φ2 + i
√

gφ1φ1gφ2φ2

)

(3)

by an SL(2, R) transformation

ρ → ρ′ =
ρ

χρ + 1
(4)

giving rise to a background

ds2 = α′
√

λ

[

− cosh2 ρdτ2 + dρ2 + sinh2 ρ

(

dθ2 +
sin2 θdφ2

1 + cos2 θdφ2
2

1 + χ2λ cos2 θ sin2 θ sinh4 ρ

)

+ dΩ2
5

]

B = α′

(

λχ cos2 θ sin2 θ sinh4 ρ

1 + χ2λ cos2 θ sin2 θ sinh4 ρ

)

dφ1 ∧ dφ2

eφ =

(

1
√

1 + χ2λ cos2 θ sin2 θ sinh4 ρ

)

λ

4πN
(5)

with suitable Ramond-Ramond fields. This is a deformation of the AdS5×S5 geometry (1)

with respect to single dimensionless parameter χ. The AdS5 ×S5 geometry is recovered in

the limit χ → 0. The goal of this article is to identify the interpretation of the deformation

with respect to χ on the field theory side of the AdS/CFT correspondence.

Precisely the deformation of this type was studied in [30], and as these authors sug-

gested, it is quite natural to interpret this background as being dual to a non-commutative

deformation of N = 4 SYM on R × S3 with the Moyal ∗-product

f ∗ g = e
2πiχ

„

∂
∂φ1

∂

∂φ′

2
−

∂
∂φ2

∂

∂φ′

1

«

/2
f(τ, θ, φ1, φ2)g(τ, θ, φ′

1, φ
′

2)

∣

∣

∣

∣

∣

φ1=φ′

1,φ2=φ′

2

. (6)

This interpretation fits naturally with the established patterns seen in other non-

commutative field theories [14 – 19]. The naturalness of this interpretation is also echoed

in [32].

There is however a problem in making this identification more precise. The

gauge/gravity dualities are motivated by the complementarity of black D3-branes of string
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theory in various regimes of the t’Hooft coupling λ [33]. This allowed for an explicit analysis

of the physics of open string degrees of freedom, which gave rise to a concrete realization of

non-commutative dynamics in the appropriate decoupling limit. The U(1)×U(1) isometry

which we exploited in constructing the χ deformation is an isometry of the near horizon

AdS5 ×S5 geometry but not of the full D3-brane geometry. This makes the direct analysis

of the open string dynamics from the world sheet point of view along the lines of [34]

impossible.

We will show in this article that embedding into full D3 geometry is still possible,

by exploiting the underlying SL(2, Z) T-duality structure of the (φ1, φ2) torus. This is

the string theoretical manifestation of the Morita equivalence in non-commutative field

theories. To take advantage of this duality, it is useful to restrict to the case where χ

is a rational number. Then, there exists an SL(2, Z) transformation which removes the

non-locality. Since this SL(2, Z) dual is a local theory, it is the description most suitable

for exploring the deep UV behavior [35]. The SL(2, Z) structure in fact gives rise to a self-

similar phase diagram similar to the fundamental domain of the moduli-space of a torus.

Similar structures have been shown to arise in NCOS [36] and PFT [27] theories as well.

Since rational numbers are dense, this will suffice for the purpose of identifying the field

theory dual of (5). In other words, we can use the fact that the effective theory in the IR

region of the phase diagram depends smoothly on χ.

Let us suppose, for sake of concreteness, that

χ =
s

p
(7)

for relatively prime integers p and s. Then, one can find integers r and q so that

(

r q

−s p

)

∈ SL(2, Z) . (8)

Acting on the Kahler structure ρ′ for the background (5) by this SL(2, Z) transformation

gives rise to

ρ′′ =
rρ′ + q

−sρ′ + p
=

q

p
+

i

p2

√
λ cos θ sin θ sinh2 ρ . (9)

In other words, the supergravity background is transformed to take the form

ds2 = α′
√

λ

[

− cosh2 ρdτ2 + dρ2 + sinh2 ρ

(

dθ2 +
sin2 θdφ2

1 + cos2 θdφ2
2

p2

)

+ dΩ2
5

]

B = α′
q

p
dφ1 ∧ dφ2

eφ =
1

p2

λ

4πN
(10)

where φ1 and φ2 are periodic with respect to 2π. We can change variables

φi = pφ̃i, i = 1, 2 (11)
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and write

ds2 = α′
√

λ
[

− cosh2 ρdτ2 + dρ2 + sinh2 ρ
(

dθ2 + sin2 θdφ̃2
1 + cos2 θdφ̃2

2

)

+ dΩ2
5

]

B = α′qpdφ̃1 ∧ dφ̃2

eφ =
1

p2

λ

4πN
(12)

with

φ̃i ∼ φ̃i +
2π

p
, i = 1, 2 . (13)

This solution is therefore recognizable as a Zp ×Zp orbifold of AdS5 ×S5 with pN units of

RR-flux threading the S5. This type of orbifold, acting on the AdS5 sector of the geometry,

was first considered in [37]. Now, this solution is no less easier to embed in the full D3

solution for its dynamics to be interpreted from the open string point of view than (5),

because of the orbifolding with respect to the killing vectors

ξi =
∂

∂φ̃i

, i = 1, 2 . (14)

However, its covering space is simply AdS5 × S5 with some exact B field. This is easier to

embed into the D3 geometry.

In order to explore the embedding into the full D3 geometry, it is convenient to first

go to the Poincare coordinate of the AdS5 × S5 geometry. This can be accomplished by

recalling the two different ways of parameterizing the hyperboloid

R

2u
(1 + u2(R2 + x2

1 + x2
2 + x2

3 − t2) = X0 = R cosh ρ cos τ

Rux1 = X1 = R sinh ρ sin θ cos φ̃1

Rux2 = X2 = R sinh ρ sin θ sin φ̃1

Rux3 = X3 = R sinh ρ cos θ sin φ̃2

R

2u
(1 − u2(R2 − x2

1 − x2
2 − x2

3 + t2)) = X4 = R sinh ρ cos θ cos φ̃2

Rut = X5 = R cosh ρ sin τ (15)

satisfying X2
0 − X2

1 − X2
2 − X2

3 − X2
4 + X2

5 = R2 in R2,4.

This implies a map between coordinates

φ̃1 = arg (x1 + ix2)

φ̃2 = arg

(

(

−R2 − t2 + x2
1 + x2

2 + x2
3

)

u2 + 1

2
+ iRu2x3

)

θ = arg





√

R2u2x2
3 +

(

u2
(

R2 + t2 − x2
1 − x2

2 − x2
3

)

− 1
)2

4u2
+ iRu

√

x2
1 + x2

2
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τ = arg

(

(

R2 − t2 + x2
1 + x2

2 + x2
3

)

u2 + 1

2
+ iRtu2

)

ρ = cosh−1





√

t2u2 +

((

R2 − t2 + x2
1 + x2

2 + x2
3

)

u2 + 1
)2

4u2R2



 . (16)

In terms of the Poincare coordinates, the supergravity background takes on a simple form

ds2 = R2

(

u2(−dt2 + dx2
1 + dx2

2 + dx2
3) +

du2

u2
+ dΩ2

5

)

(17)

and the B-field having the form

B = α′qp
∂φ̃1

∂xµ

∂φ̃2

∂xν
dxµ ∧ dxν . (18)

The fact that dB = 0 ensures that the AdS5 × S5 solution is unperturbed. Suppose we

rescale

u =
r

R2
(19)

which makes the metric take the form

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) + R2

(

dr2

r2
+ dΩ2

5

)

. (20)

It is then possible to extend this solution to full D3

ds2 =

(

1 +
R4

r4

)−1/2

(−dt2 + dx2
1 + dx2

2 + dx2
3) +

(

1 +
R4

r4

)1/2

(dr2 + r2dΩ2
5) (21)

while continuing to let the B-field have the form (18) which continues not to back react.

In the large r limit, B becomes

B = α′qp dφ̃1 ∧ dφ̃2 (22)

where

φ̃1 = arg(x1 + ix2), φ̃2 = arg(−R2 − t2 + x2
1 + x2

2 + x2
3) . (23)

What this suggests is that the covering space of (12) is interpretable as N = 4 gauge theory

with background field

F =
B

α′
= qp dφ̃1 ∧ dφ̃2 (24)

in the decoupling limit. It is straight forward to verify that the equations of motion and

the Bianchi identity for the gauge fields

d ∗ F = 0 = dF (25)

are satisfied. However, since the flux is fractional, it must be interpreted as giving rise to

a ’t Hooft flux [38].
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t

Figure 1: The contour of fixed τ (green) and fixed φ̃2 (red) in the θ = 0 hypersurface which

amounts to setting x1 = x2 = 0. The arrows represent the field of Killing vector ξ2.

Our remaining task in addressing our original motivation is to work out the implication

of (24) in identifying the field theory dual of (5). To facilitate this, it is useful to first work

out the map which relates the coordinates on the boundary of global AdS5 to the the

boundary of Poincare AdS5. This is achieved by taking the large u limit of (16) which

reads

φ̃1 = arg (x1 + ix2)

φ̃2 = arg

(−R2 − t2 + x2
1 + x2

2 + x2
3

2
+ iRx3

)

θ = arg





√

R2x2
3 +

(

R2 + t2 − x2
1 − x2

2 − x2
3

)2

4
+ iR

√

x2
1 + x2

2





τ = arg

(

R2 − t2 + x2
1 + x2

2 + x2
3

2
+ iRt

)

. (26)

Since we will ultimately compactify along the isometry vectors (14), it would be instructive

to see how these vectors are oriented in the Poincare coordinates. We illustrate in figure 1

the contour of fixed τ and fixed φ̃2 in the θ = 0 hypersurface which amounts to setting

x1 = x2 = 0.

It is also useful to specify the metric for the space on which the field theory is defined.

Starting with the round metric on R × S3

ds2 = R2
[

dτ2 + dθ2 + sin2 θdφ̃2
1 + cos2 θdφ̃2

2

]

(27)
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and applying (26) maps this to a conformally flat metric

ds2 = f(t, x1, x2, x3)(−dt2 + dx2
1 + dx2

2 + dx2
3) (28)

with

f(t, x1, x2, x3) =

(

4R4

R4 + 2
(

t2 + x2
1 + x2

2 + x2
3

)

R2 +
(

−t2 + x2
1 + x2

2 + x2
3

)2

)

. (29)

Therefore, in order to interpret (12) as a field theory on S3 with a round metric, we should

start with (24) on flat Minkowski metric, apply a conformal transformation, followed by a

diffeomorphism with respect to the map (26). Luckily, gauge fields have conformal scaling

dimension zero [39]. So F is invariant under conformal transformation. We therefore

conclude that (12) is dual to N = 4 theory with

F = qp dφ̃1 ∧ φ̃2 (30)

with coordinates φ̃i periodic under shift by 2π/p.

To proceed further, we will view S3 as T 2 parameterized by (φ̃1, φ̃2), fibered over an

interval I parameterized by 0 ≤ θ ≤ π/2. It is natural to express functions on S3 in a basis

f(θ, φ̃1, φ̃2) = g(θ)ein1φ̃1+in2φ̃2 . (31)

The fact that φ̃1 and φ̃2 are periodic with respect to shift in 2π/p implies that n1 and n2

must be integer multiples of p. However, in the presence of a fractional flux [40, 41]

∫

F = qp
1

p2
=

q

p
, (32)

the p × p degrees of freedom in the adjoint of SU(pN) splits into adjoints of SU(N) in

a box whose size is larger by a factor of p [42, 43]. The non-commutative algebra of

the p × p adjoint degrees of freedom are precisely isomorphic to the Moyal algebra with

rational dimensionless non-commutativity parameter as was shown, e.g., in [44, 45]. These

arguments are also reviewed in more detail in the appendix.

Since the argument is somewhat long winded, the outline of the argument is summa-

rized in the flow chart diagram illustrated in figure 2. Our goal was to show that the Melvin

twist of AdS5 × S5 is the supergravity dual of NCSYM on S3 with the non-commutative

(φ1, φ2) coordinates, illustrated by a blue arrow in figure 2. We relied heavily on the

SL(2, Z) structure both on the field theory side and the supergravity side of the corre-

spondence, as well as the rationality of the deformation parameter χ, to reformulate the

theory in terms of an orbifold of N = 4 theory. This allowed the duality from the open

string/closed string perspective to be made most manifest. By following the chain of dual-

ity back to the original description, we derive the original duality of interest confirming [30].

This is the main result of this article.

The rationality of the deformation parameter χ and subsequent SL(2, Z) transforma-

tion proved to be the powerful handle in defining these theories at the microscopic level.

– 7 –
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AdS5xS5
Twisted with B field

AdS5xS5 AdS5xS5
with B−field

D3 with
B−field

D3 with
B−fieldwith B−field

N=4 SYMN=4 SYM
on S3 with Bon S3

NCYM

Covering
Space

Morita
Transform

Map to
Poincare

Conformal
Trans

Embed 
in D3

Decoupling
Limit

SL(2,Z)

Orbifold

Open/Closed String Duality

of AdS5xS5

N=4 SYM
on S3/Z_p

Z_p orbifold

Figure 2: Schematic flowchart of the duality chain, demonstrating that the blue arrow in the far

left is a consequence of the standard open/closed string duality correspondence on the far right.

It should be possible to formulate a microscopic formulation of Puff Field Theory along

these lines as well [46].

It should be noted that strictly speaking, the deformation/orbifolding along ξi which

we considered in this article breaks all supersymmetries (just as in the pure Melvin case

of [18, 19]). What this means is that one expects the supergravity background to be

unstable to decay, and for the field theory side to suffer from runaway vacua. However, the

fact that the supergravity background considered in this article does satisfy the classical

equation of motion implies, as was the case for various non-supersymmetric orbifolds [47],

that the effects of instability are subleading in 1/N expansion. One could also imagine

our analysis for ξ1 and ξ2 in AdS5 × S5 which preserves some fraction of supersymmetry,

such as choosing the ξ1 to be along the Hopf fiber of S3, and ξ2 to be along the Hopf fiber

of the S3 of SO(4) ∈ SO(6). More specifically, parameterize the metric of AdS5 × S5 by

coordinates

ds2 = R2
[

− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
3(1) + dΩ2

5

]

(33)

where

dΩ2
5 = dα2 + cos2 αdβ2 + sin2 αdΩ2

3(2) (34)

with

dΩ2
3(i) = dΩ2

2(i)+(dφi+Ai)
2, dΩ2

2(i) =
1

4
(dθ2

i +sin2 θidϕ2
i ), Ai = −1

2
(1−cos θi)dϕi (35)

and set ξi = ∂φi
. Performing a Melvin twist by the amount χ will give rise to a geometry

ds2 = R2

[

− cosh2 ρdτ2 + dρ2 + sinh2 ρ

(

dΩ2
2(1) +

(dφ1 + A1)
2

(1 + χ2λ sinh2 ρ sin2 α)

)

+ dα2 (36)

+ cos2 αdβ2 + sin2 α

(

dΩ2
2(2) +

(dφ2 + A2)
2

(1 + χ2λ sinh2 ρ sin2 α)

)]

which is to be interpreted as an example of a dipole field theory [20, 21]. If the deformation

parameter takes on a rational value χ = s/p, this geometry can be mapped, via an SL(2, Z)

transformation, to (AdS5/Zp) × (S5/Zp) geometry with torsion

ds2 = R2

[

− cosh2 ρdτ2 + dρ2 + sinh2 ρ

(

dΩ2
2(1) +

1

p2
(dφ1 + A1)

2

)

+ dα2 (37)

+ cos2 αdβ2 + sin2 α

(

dΩ2
2(2) +

1

p2
(dφ2 + A2)

2

)]

– 8 –
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preserving 1/4 of the original supersymmetry and should be stable. Other possible Killing

vectors along which one can compactify and or twist preserving some fraction of super-

symmetries can be found, e.g., in [48 – 51]. Along lines similar to [16], many of these

constructions would constitute a laboratory for exploring issues of string theory in time

dependent backgrounds.

Finally, let us consider the thermodynamics of the twisted U(1) × U(1) ∈ S3 theory

from the supergravity point of view. Start with the Schwarzschild black hole solution [52]

ds2 = −
(

r2

b2
+ 1 − wnM

rn−2

)

dt2 +
dr2

(

r2

b2
+ 1 − wnM

rn−2

) + r2dΩ2 (38)

where n = 4 for the AdS5, wn = 16πGN

(n−1)V ol(Sn−1)
, and

dΩ2 = dθ + sin2 θdφ2
1 + cos2 θdφ2

2 . (39)

The period of t coordinate is given by

β =
1

T
=

4πb2r+

4r2
+ + 2b2

,
r2
+

b2
+ 1 − w4M

r2
+

= 0, r+ = horizon radius , (40)

and the boundary is conformal to S1 × S3 with periods β and R = b, respectively.

One can then perform the χ deformation on this background, giving rise to a new

background

ds2

α′
=

√
λ



−
(

cosh2 ρ − µ

sinh2 ρ

)

dτ2 +
cosh2 ρ

(

cosh2 ρ − µ
sinh2 ρ

)dρ2 + sinh2 ρdΣ2



 (41)

where we have changed coordinates to match the asymptotic behavior of (1)

t = Rτ, r4 = R4 sinh4 ρ = α′2λ sinh4 ρ (42)

and

dΣ2 = dθ2 +
sin2 θdφ2

1 + cos2 θdφ2
2

1 + λχ2 cos2 θ sin2 θ sinh4 ρ
(43)

µ =
wnM

R2
= π4R4T 4 + (terms subleading in 1/TR) (44)

Just as in the undeformed case, the use of Schwarzschild black hole solution suffers from

the Hawking-Page transition at low temperatures, but for T > 1/R, it follows from the

standard reasoning that the entropy

S(T ) =
π2

2
N2V T 3 , (45)

being proportional to the area of the horizon in the Einstein frame, is unaffected by χ.
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A. Specturm and interaction of fluctuating fields on a torus with a ’t Hooft

flux

In this appendix, we show explicitly that U(p) gauge theory on a torus of size L × L

with fractional flux q/p is equivalent to a non-commutative U(1) gauge theory with non-

commutativity parameter θ = 2πs/p× (pL)2 on a torus of size pL× pL. This is a standard

foliation argument of non-commutative torus [44, 45] but we will follow the notation and

conventions of [43].

Consider U(p) gauge theory on box size L × L with fractional flux q/p. Convenient

gauge is

A0
1 = 0

A0
2 = F0x1I +

2π

L2
Diag(0, 1/p, . . . , (p − 1)/p) (46)

where

F0 =
2π

L1L2

q

p
.

Adjoint scalars in such a background will satisfy the boundary condition

Φ(x1 + L1, x2) = e2πi(x2/L2)T V qΦ(x1, x2)V
−qe−2πi(x2/L2)T

Φ(x1, x2 + L2) = Φ(x1, x2) (47)

Treating the action to the quadratic order, the plane wave solution with this boundary

condition is

δΦm1,m2,r(x1, x2) = ϕm1,m2,rΛm1,m2,re
2πi(m1x1/L1+m2x2/L2)

where

m1 ∈ Z/p, m2 ∈ Z, r = 0 . . . p − 1 (48)

and

Λm1,m2,r = Diag{1, ω, ω2, . . . , ωp−1} ·























e−2πix2/L2

. . .

e−2πix2/L2

1
. . .

1

































r











p − r

· V −r (49)

where ω = e2πim1s for qs ≡ 1 (mod p).
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The energy and momentum carried by these modes (see (15)-(17) of [43]) are

E2 = k2
1 + k2

2, k1 =
2πm1

L1
, k2 =

2π

L

(

m2 −
r

p

)

(50)

which in light of (48) is identical to that of a single degree of freedom in a box of size pL,

rather than p2 degrees of freedom in a box of size L.

Let us define an algebra for the ϕ(m1,m2, r) that is homomorphic to the algebra of

Φm1,m2,r(x1, x2). In other words, we want

Φ[ϕk1,k2(x1, x2) ∗ ϕk′

1,k′

2
(x1, x2)] = Φ[ϕk1,k2(x1, x2)] · Φ[ϕk′

1,k′

2
(x1, x2)] (51)

where

ϕk1,k2(x1, x2) = ϕk1,k2e
ik1x1+ik2x2 (52)

We find

ϕk1,k2(x1, x2) ∗ ϕk′

1,k′

2
(x1, x2) = eik1θk′

2(ϕk1+k′

1,k2+k′

2
(x1, x2) (53)

follows from the basic fact that

ΛrΛr′ = ω′−rΛr+r′ (54)

To see this, note that the phase factor

ω′−r = e−2πim′

1sr = e−2πim′

1s(r−pm2) = e
i(pL)2s

2πp
k′

1k2 (55)

from which we read off that

θ =
s

p
· (pL)2

2π
. (56)

We see that this is precisely the non-commutativity parameter one expects to find by

starting with q units of flux in a U(p) theory and acting by an SL(2, Z) element
(

a b

c d

)

=

(

p −q

s r

)

(57)

which is the inverse of (8), and which according to (1.9) of [53] maps the theory to a

U(1) theory with no ’t Hooft flux. The condition qs = 1 mod p is precisely the SL(2, Z)

condition pr + sq = 1.

Now, this is not quite the Moyal product, but it can be shown to be isomorphic to it.

Under the map

ϕk1,k2(x1, x2) = e−ik1θk2/2ϕ̃k1,k2(x1, x2) (58)

the algebra becomes

ϕ̃k1,k2(x1, x2) ∗ ϕ̃k′

1,k′

2
(x1, x2) = ei(k1θk′

2−k2θk′

1)/2ϕ̃k1+k′

1,k2+k′

2
(x1, x2) . (59)

The same argument, applied to the T 2 fiber of S3, gives rise to an algebra

f(θ, φ1, φ2) ∗ g(θ, φ1, φ2) = e
2πiΘij∂φi

∂φ′

j
/2

f(θ, φ1, φ2)g(θ, φ′

1, φ
′

2)

∣

∣

∣

∣

φi=φ′

i

(60)

with

Θ12 = −Θ21 =
s

p
(61)

which is the non-commutative deformation (6) along (φ1, φ2) coordinates of S3.
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